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On the basis of various direct numerical simulations (DNS) of turbulent channel flows the following picture
is proposed. (i) At a distance y from either wall, the Taylor microscale \ is proportional to the average distance
£, between stagnation points of the fluctuating velocity field, i.e., N(y)=B,€,(y) with B, constant, for §,<y
= 6, where the wall unit 6, is defined as the ratio of kinematic viscosity v to skin friction velocity u, and & is
the channel’s half-width. (ii) The number density n, of stagnation points varies with height according to n;

=% y . ! where y,=y/06, and C; is constant in the range 8,<y < 4. (iii) In that same range, the kinetic energy

dlsslpatlon rate per unit mass, e, equals where E, is the total kinetic energy per unit mass normalized
by u and K B /Cy is the stagnation pornt Von Karmén coefficient. (iv) In the limit of exceedingly large
Reynolds numbers Re,=6/6,, large enough for the Reynolds stress —(uv) to equal uT in the range J,<y
< 0, and assuming that production of turbulent kinetic energy balances dissipation locally in that range and
limit, the mean velocity U,, normalized by u, obeys - U =3 in that same range. (v) It follows that the von
Karmén coefficient « is a meaningful and well- deﬁned coefﬁcrent and the log law holds in turbulent channel/
p1pe flows only if E, is independent of y, and Re, in that range, in which case x~ k. (vi) In support of

—U+~ 22 'DNS data of turbulent channel ﬂows which include the highest currently available values of Re .,

3 ky?
are best fitted by E, = -B4y+2/15 nd 5~ U = +1 215 with B, independent of y in §,<<y << §if the significant

departure from —(uv)= u at these Re values is taken into account.
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I. INTRODUCTION

The mean flow profile of turbulent boundary layers is
very widely taken to incorporate an extensive log-law region
for a very broad range of turbulent wall-bounded flows. As a
result, the log law and its so-called von Kdrman constant are
a central part of most engineering turbulence models. How-
ever, renewed interest and new measurements over the past
ten to fifteen years have led to debates (i) on the form of the
mean velocity profile (is it a log law or a power law with
very weak power exponent?), (ii) on its scalings with Rey-
nolds number and (iii) on its dependence on or independence
of overall flow geometry (see the Theme Issue of Phil. Trans.
R. Soc. Lond. A (2007), volume 365, on “Scaling and struc-
ture in high-Reynolds number wall bounded flows”). Fittings
of new mean flow data with a log law lead to a variety of
values for the von Kdrmén constant «: as low as 1/e for
channel flows [1], as high as 0.43 for pipe flows [2] and «
=(.38 for zero-pressure-gradient boundary layer flows [3].
Due to this nonuniversality the von Karman constant is being
renamed von Kédrman coefficient [3].

These seemingly small departures from the classically ac-
cepted [4] k=0.41 value matter because of the reliance that
so many turbulence models have on the log law. In a per-
sonal communication in early 2009, Phillip Spalart mentions
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that “the recent fluctuations in preferred « values leads to
changes of the order of 1% in the drag predicted by CFD for
an airplane with typical RANS models.” In terms of fuel
economy sustained over years, this 1% drag change is sig-
nificant.

All these are issues which in one way or another would
have been solved if the turbulence closure problem had been
solved. In this respect, the main goal of the present paper is
not to find definitive answers to these specific issues, nor is it
to find closure relations between different order statistics of
flow quantities [5]. Instead, our main goal is to determine
relations between mean flow quantities, such as the mean
flow and the dissipation rate of kinetic energy, and the un-
derlying flow field topography of the fluctuating velocities.
Recent results obtained for homogeneous isotropic turbu-
lence indicate that it is not impossible to find relations be-
tween bulk flow statistics and the underlying topography of
the fluctuating velocity field. Mazellier and Vassilicos [6]
related the dissipation constant C, to the number of zero
crossings of velocity fluctuations and were able to take ac-
count the nonuniversality of C, by their formula. Goto and
Vassilicos [7] went one step further and related C, to the
number of stagnation points of the velocity fluctuations. The
stagnation points are the most basic aspect of field topogra-
phy and they have a multiscale spatial distribution [8]. As
such, they are a convenient and well-defined concept, unlike
“eddies.” They have also proved useful for understanding
turbulent pair diffusion [9].

In this paper, we present a phenomenology based on the
underlying topography of the fluctuating velocity field which
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TABLE I. (Color online) Parameters for the DNS of turbulent channel flow. The term “Forcing” refers to

wall or near-wall actuations.

Case Forcing Re, Re, L, L, Ny XNy XN,

A No 4250 179 4o 476/3 200X 129 X200
Al Yes® 4250 114.4 4o 47613 200X 129 X200
A2 Yes” 4250 222.3 4o 476/3 200X 129 X200
A3 Yes 4250 141.6 4mé 47613 200 X 129 X200
B No 2400 109.5 4o 276 100X 65X 100
C No 10400 392.6 276 w6 256 X257 X256

Xu et al. [13].
Min et al. [14].

relates the mean flow profile to the multiscale structure of
stagnation points of the velocity fluctuations. We use direct
numerical simulations (DNS) of various fully developed in-
compressible turbulent channel flows to validate our new
approach and propose a resulting new starting point for a
new intermediate asymptotic analysis of the mean flow pro-
file of turbulent channel/pipe flows.

With the exception of the highest Reynolds number DNS
channel flow data [10] which we use toward the end of this
paper, the Reynolds numbers considered here range between
low to moderate (though, of course, always large enough for

the flow to be turbulent). In terms of Re,= u; =0/ 6, where
u, is the skin friction velocity, 6 the channel half-width, v the
fluid’s kinematic viscosity and the wall unit §,=v/u,, the
highest Reynolds number DNS data [10] correspond to Re,
=950 and 2000. The Reynolds numbers of our own DNS
data range between Re_ =110 and 400. This is too low for a
direct assessment of the log law but appears to be sufficient
for the new approach to turbulent mean flow profiles which
we propose here and which is based on stagnation points of
the fluctuating velocity field.

The paper is organized as follows. In Sec. II we describe
our DNS of turbulent channel flows and in Sec. III we
present some of the conventional statistics which are ob-
tained from our simulations. In Sec. IV we introduce the
stagnation point approach and its application to turbulent
channel flows. The phenomenology and the mean flow prop-
erties implied by the results obtained from the application of
this approach to our DNS are expounded in Secs. V and VI.
Finally, some analysis of the highest Reynolds number DNS
channel flow data [10] is presented in Sec. VII before sum-
marizing our conclusions in Sec. VIIL

II. DNS OF TURBULENT CHANNEL FLOW

We solve the nondimensionalized incompressible Navier-
Stokes equations in Cartesian coordinates

V-u=0,

1 1
ou+—-[Vuou)+w-Vul=—-Vp+—Au, (1)
2 Re,

where Re,=U_.d/v is the Reynolds number based on U,
= %U,, and U, is the bulk velocity of the flow kept constant
in time.

We use the code of Laizet and Lamballais [11] where
spatial derivatives are estimated using a sixth-order compact
finite-difference scheme and Egs. (1) are numerically inte-
grated with a fractional step method using a three-stage
third-order Runge-Kutta scheme. The fractional step method
projects the velocity field to a divergence free velocity field
and the Poisson pressure equation is solved in Fourier space
with a staggered grid for the pressure field. The staggered
grid for the pressure was used for numerical stability pur-
poses as was the skew-symmetric implementation of the
nonlinear term in the Navier-Stokes equation [see Eq. (1)].
The grid stretching technique maps an equally spaced coor-
dinate in the computational space to a nonequally spaced
coordinate in the physical space, in order to be able to use
Fourier transforms in the inhomogeneous wall-normal direc-
tion [11,12].

To simulate incompressible channel flow turbulence we
adopted periodic boundary conditions for u = (u,v,w) in the
x and z directions except at the walls at y=0 and y=2 6 where
the boundary conditions are either #=0 or borrowed from
studies of flow control schemes aimed at drag reduction
[13,14]. The mean flow is in the x direction (i.e., (v)=(w)
=0 but (u) # 0, where the angle brackets (.), in this study,
denote averages in the x and z homogeneous directions and
time expect when, in Sec. IV stagnation points of u —(u) are
sought, in which case the average (u) is only over x and z)
and the bulk velocity U, in that direction was kept at the
same constant value at all times by a control procedure
which adjusts the mean pressure gradient —d{p)/dx at each
time step. The choice of U, is made in accordance with
Dean’s formula ReTZO.119ReZ/ 8 [15] for a given choice of
Re .. The number of grid points N,, N, and NV, in the x, y, and
z directions as well as the domain sizes L, and L, in the x and
z directions are given in Table I. The domain size in the y
direction is of course L,=26.

We use different near-wall forcings and boundary condi-
tions at the walls so as to demonstrate how our stagnation
point approach accounts for the way that different wall ac-
tuations modify the mean flow profile. Specifically, we con-
sidered the following three control schemes:

(i) w=0 at the walls with forcing f(y)
=[-A sin(2my/A)H(A-y),0,0] near the y=0 wall and simi-
lar forcing near the y=26 wall [13] where H is the Heaviside
function, A=0.16U2/ §=u?/ 5, and A=118, (case Al). The
forcings are applied to the Navier-Stokes momentum Eqgs.
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FIG. 1. (Color online) Profile of the production to dissipation
ratio. Note the existence of an approximate equilibrium layer which

grows with Re, and where production approximately balances
dissipation.

(1). This scheme corresponds to a steady wall-parallel forc-
ing localized within eleven wall units from the walls and
uniform in the direction parallel to them. This force field
averages to zero if integrated across the channel; it deceler-
ates the flow closest to the wall but accelerates it in the
immediately adjacent thin region.

(ii) u=(0,a cos(a(x—ct)),0) at the wall [14] with a/U,
=0.05, @/ 6=0.5 and ¢=-2U,, (case A2). This boundary con-
dition corresponds to a blowing-suction traveling wave on
the wall.

(iii) #=0 at the walls and v(x,y,z,f) replaced by
—v(x,y4,2,1) at all (x,z) points on the planes y,=108, and
v4=26-106, (case A3). This corresponds to a computational
control scheme whereby the normal velocity at a distance y,
from the walls is made to change sign at every time step.

The numerical parameters of our computations are given
in Table I. Note that the net mass flux through the wall is
zero in all the cases considered here and that the y-integrated
momentum balance

duy _ 2( _X)
de —(uvy=u;| 1 5 (2)

holds for all y in all cases except with Al forcing where it
holds for A<y<<26—A. All our nonforced computations
have been validated against previously published databases
[16,17].

III. CONVENTIONAL DNS RESULTS

When Re.>1 one might expect an intermediate region
6,<y<<8 where production balances dissipation locally
[18], i.e., —(uv)ﬁ(u)z €. The idea of such an intermediate
region is supported by our DNS results (see Fig. 1) which
suggest that
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FIG. 2. (Color online) Mean velocity profiles. For comparison
we also plot best log-law fits. O: U,=y,, - U+=ﬁy++l4.2,

— =t U= gye 400, - - = Uy=ggya+11.2, — U=y, +5.2

B,=Ple=- (uv}%(u)/e (3)

tends to 1 as Re,— o in this intermediate region (a recent
paper [19] proves this asymptotic result by assuming, how-
ever, that the mean flow has a logarithmic shape in the inter-
mediate region) and that this region where this approximate
balance holds also increases as Re, increases. The slight dis-
crepancy away from B, =1 at these moderate Reynolds num-
bers is well known and agrees with other previously pub-
lished DNS results [4].

In this intermediate region, Eq. (2) implies —(uv)=u> as
y/6—0 and y,=y/5,—, assuming that dlr‘fy+U+ (where
U,={u)/u,) does not increase faster than y? with p=1 in
this limit. It then follows that in this intermediate equilibrium
region,

3
d
€= h implies ﬁ ~ Uy (4)
Ky dy  «ky

as Re_>1. At finite Reynolds numbers the equation for the

mean shear in Eq. (4) should be replaced by %L—VQZIB;—?:—;
where
—(uv)
By=—5—". (5)
u

T

Note that even though B, and B; may tend to 1 as Re, > 1,
they are definitely different from 1 and even functions of y,
and y/ ¢ at finite values of Re..

The mean flow profiles show clear impacts of the control
schemes on the mean flow (see Fig. 2). For our various con-
trol schemes at the same Re,.=4250, the skin friction de-
creases as a result of both case Al and A3 but increases when
the control scheme A2 is applied (see Table I). This obser-
vation agrees with Fig. 2 where mean flow values for cases
Al and A3 are higher than for case A (no control scheme),
and mean flow values are lower for case A2 than for case A.
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FIG. 3. (Color online) The inverse von Kérman coefficient
EydiyU+ versus y,. Taking the definition of « to be given by the
left-hand equation in Eq. (4) it is really B,/(B3k) which is plotted
against y,. The effects of the various near-wall actuations are
significant.

With reference to the log-law scaling U+=1K10g y.+B
which results from integration of Eq. (4) if 1/« is indepen-
dent of y, we plot the coefficient ydiyU+ versus y, in Fig. 3
and the coefficient B= U+—(y% U,)log y, versus y, in Fig. 4
for all the six different DNS cases of Table I. Note that
ydiV U, is usually referred to as 1/« but is in fact B,/(Bsk) in
the present context where « is defined by the left-hand side
equation in Eq. (4). It is only if B, and B; both equal 1 in the
equilibrium layer, as may be the case when Re. > 1, that

fy(u)zﬁk yields d%(u)ﬁ Z—) and that y%U+ becomes 1/«

By ky
in the eqail)ibrium layer.

The values of B are affected by the various control
schemes (see Fig. 4) in a way consistent with the observa-
tions made two paragraphs earlier (higher values of B for
cases Al and A3 than for A and lower for case A2). How-
ever, it is hard to conclude on the validity of the log law from
these results and in particular from the plot in Fig. 3 which

40
——Case A

—— Case A1
—o— Case A2

—— Case A3 |
—<—Case B
Case C

u - (ydyU+)Iny+

-20 I I I I I I I
0 50 100 150 200 250 300 350 400

+

FIG. 4. (Color online) B= U+—(y% U,)log y, versus y, for the
six different DNS cases in Table I.
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FIG. 5. (Color online) Points where u#’ =u—(u)=0 for case C at
a given instant in time.

clearly shows a significant dependence on near-wall condi-
tions, Re and y,. It may be that the log law is not valid at all
or it may be that the log law is not valid unless the Reynolds
number is sufficiently high, definitely higher than the Rey-
nolds numbers of our simulations.

IV. STAGNATION POINT APPROACH

As our direct DNS study of the mean flow equation in Eq.
(4) does not yield clear results, we chose instead to investi-
gate the validity of the dissipation equation in Eq. (4). For
this we make use of the stagnation point approach which has
been used recently to show how the number density of stag-
nation points in high-Reynolds number homogeneous isotro-
pic turbulence (HIT) determines salient properties of turbu-
lent pair diffusion [9] and kinetic energy dissipation rate per
unit mass [6,7]. In particular, a generalized Rice theorem was
recently proved [7] for high-Reynolds number HIT which
states that the Taylor microscale is proportional to the aver-
age distance between neighboring stagnation points. This
average distance is defined as the —1/d power of the number
density of stagnation points which are points in the
d-dimensional space of the flow where the turbulent fluctua-
tion velocity is zero.

The generalized Rice theorem [7] for high-Reynolds num-
ber HIT holds under two main assumptions: (i) statistical
independence between large and small scales and (ii) ab-
sence of small-scale intermittency effects. The question
which arises in the context of the present work is whether it
also holds in some region of turbulent channel flows. For
other cases where measures and concepts from HIT impact
wall-bounded turbulence please refer to [20,21].

To obtain some insight into this question by way of our
DNS, we consider stagnation points of the turbulent fluctua-
tion velocity field ' =u—(u), i.e., points where all compo-
nents of the velocity fluctuations around the local mean flow
are zero. A three-dimensional (3D) plot of these points for an
instant in time in our DNS channel is presented in Fig. 5. We
use fourth-order Lagrangian interpolation and the Newton-
Raphson method to locate these points. Details on how these
points are found are given in the Appendix.
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FIG. 6. (Color online) Support for the generalized Rice theorem as a meaningful approximation in turbulent channel flows with various
Reynolds numbers and wall actuations (see Table I). (a) B; as a function of y,, (b) B; as a function of y/ & with no wall forcings and (c) B

as a function of y/ & with wall forcings.

We define Ny(y,) to be the total number of these stagna-
tion points in a thin slab parallel to and at a distance y from
the channel’s y=0 wall (this number can also be defined with
respect to the y=26 wall, but here we only consider 0=y
= & without loss of generality). The dimensions of this slab
are L, X 6, X L, with slab thickness &, ~ 6,. The average dis-
tance between stagnation points at a helght y from the wall is

{,=+/=5~. A Taylor microscale \(y) can be defined from
ely)= 2V<s,js,] i is the fluctuating velocity’s

strain rate tensor and E(y)= <|u|2). The question raised is
whether a region of turbulent channel flow exists for Re,
> 1 where

v2E
35 Where s;

Ay) =B €,(y) (6)

with B, independent of y and Reynolds number. The answer
provided by our DNS is that By is indeed approximately
constant over an intermediate range 5,<<y= &, but not per-
fectly so as our plots in Fig. 6 attest to. It is worth noting that
this constancy of B, appears to be better defined for cases A,
B, and C where there is no wall or near-wall actuation.
Hence, a small discrepancy away from B;=Const may be
achieved as a result of those different wall forcings. How-
ever, part of the even smaller discrepancy in cases A, B, and
C might be accountable to neglected small-scale intermit-
tency effects which, in the case of high-Reynolds number

HIT, are known to manifest themselves as a weak Reynolds
number dependence on B, [6]. In the case of wall-bounded
turbulence, small-scale intermittency effects could therefore
manifest themselves as a weak dependence of B; on local
Reynolds number y,=y/§, (see also [22]). However, we
leave this refinement for future studies.

Using Eq. (6) and €,= /7~ Lk

, We write
v2E v 2E v 2F v2E
e= 5= a=rm N=r 50, ()
3N 3B{; 3BLL. " 3B

where we have introduced the number density of stagnation
points ny=N,/(L,L.J,). Combining this last equation with

—(uv>d (u)y=B,€e and using e (u)=K—; as well as C= 3<2MEU>,
we obtam
o= ggyll, (8)
where C, is given by
B
=1 )
KB2C

The classical claims [4] are that k=0.4, C=2, and B,
=1 in the intermediate range 1 <y, <Re, as Re,— . These
claims therefore imply that C, should also be a constant in
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FIG. 7. (Color online) C as a function of y, for different Rey-
nolds numbers and different wall-actuation cases (see Table I).

that same range and limit provided B, is. While, as we have
seen, B, is not too far from being constant in the range J,
<y=J, k and C are significantly far from constant in this
range (see Figs. 3 and 7). Even so, our DNS evidence (see
Fig. 8) suggests that C; tends to a well-defined constant in
the range J,<<y = § as Re, increases. Remarkably, this con-
dition on Re, for the constancies of C,; and B, seems to
require as little as Re, exceeding a few hundred. It is equally
remarkable that our calculation of N,, which underpins B,
and C,, has involved an average over a number of time
samples that is two orders of magnitude smaller than for the
time average required to statistically converge (u), (uv), E,
and e.

The constancy of C; in the range 6, <y = ¢ implies that,
in that range, the number density n, of stagnation points
decreases with distance from the wall as y;]. This is in quali-
tative agreement with Fig. 5 which shows the stagnation
points to be increasingly denser as the wall is approached.

The constant C, can be interpreted as representing the
number of turbulent velocity stagnation points within a cube
of side length equal to a few multiples of &, [see Eq. (8)]
placed where y equals a few multiples of 104, as seen in Fig.
8(a). This is the lower end of the range where n,~y;' and
seems to be where the upper edge of the buffer layer is
usually claimed to lie [4].

Equations (8) and (9) have been derived by assuming
well-defined constant values of «, B,, C, and B,. However,
our DNS results show that, at the Reynolds numbers consid-
ered, B; and C; are indeed constant but k, B,, and C are
clearly not. Equations (6) and (8) with constant dimension-
less values of B| and C; seem to be more broadly valid than
the assumptions under which we derived Eq. (8). Therefore,
in the next section we explore the phenomenology behind the
new Egs. (6) and (8) and the constant values of B; and C; in
the range 5,<y= ¢ and in Sec. VI, we go one step further
and derive the consequences of the constancies of By and C;
on the mean flow profile without assuming well-defined con-
stant values of «, B,, and C.
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FIG. 8. (Color online) Normalized number of turbulent velocity
stagnation points for different Reynolds numbers and different wall-
actuation cases (see Table I). (a) C, versus y,; (b) C; versus y/ 4.

V. PHENOMENOLOGY

One interpretation of the constancy of B; can be obtained
by considering the eddy turnover time 7 which is defined by
e=FE/ 7. Combined with the equation €= fi—f which defines A,
one obtains 3\*=2v7. Using Eq. (6), B;=Const is then
equivalent to

e
:S~ T, (10)

which indicates that in the equilibrium layer, the time it takes
for viscous diffusion to spread over neighboring stagnation
points is the same proportion of the eddy turnover time at all
locations and all Reynolds numbers. In high-Reynolds num-
ber turbulence, the turnover time is also the time it takes for
the energy to cascade to the smallest scales.

For an interpretation of the constancy of C; note first that
Eq. (8) and €S:\/L;,L”:(nx5v)‘”2 imply €2=C;'8,y. From €
v2E ]

=33 and Bj=\/{; it then follows that
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2E
e= 201 (11)
3 K,y
with
B}
=—. 12
Ky C (12)

The meaning of C, and B; constant is therefore, using Eq.
(11), that the eddy turnover time 7=E/ € is proportional to
y/u, throughout the range where they are constant. The con-
stant of proportionality is 3«,/2 where k; is determined by
the stagnation point coefficients B; and C; and is constant if
they are constant. We refer to «, as the stagnation point von
Kdarman coefficient.

Note that in the present context, Eq. (11) replaces the
usual e=u>/ky [4], and that these two equations reduce to
the same one only if and where E~ u independently of y,
and Re..

VI. MEAN FLOW PROFILE IN THE EQUILIBRIUM
LAYER

In this section we spell out the consequences of the con-
stancies of B; and C, on the mean flow profile. In the equi-
librium layer the expectation is that B,— 1 in the limit Re,
— 00, ThlS means that —(uv)-+ o (uy=B,€ may be replaced by
—~(uv) L o (w)=€in the equilibrium layer. The constancy of B,
and C, 1n this same limit implies a constant B /Csin €
—-EJrK—V where E, E/u2 It then follows that (uv)d‘ (u)

=€= E —. In turbulent channel/pipe flows where we can

+Kv
have some mathematical confidence that, as Re,—,

—(uv)— u? in an intermediate layer 8,<y <<, it finally fol-
lows that

duy 2 u,
P A —E+_
dy 3 Ky

in that same layer and limit. At finite Reynolds numbers this

(13)

new Eq. (13) should be replaced by d) 3 B; +K\
account should be taken of the fact that B,, B3, and «; all
have their own, potentially different, rates of convergence
toward their high-Reynolds number asymptotic constant val-
ues.

An important step taken in deriving both Egs. (4) and (13)
has been the local high-Reynolds number balance P=€ in
the equilibrium layer. In terms of the classical assumption
6:ui/ Ky, P=B,e implies that Py/ui should equal B,/«
which should be constant in the equilibrium layer as a result
of the balance between P and e. In terms of the new formula
(11), P=B,e implies that %Py/(EJrui) should equal B,/k;
and the balance between P and € means that it should be
B,/ Kk, rather than B,/ which is constant in the equilibrium
layer. The main difference is the presence of E in Eq. (11). In
Fig. 9 we plot our DNS results for Py/ (B, 3) versus y, and
in Fig. 10 our DNS results for Py/ u,. It is clear that the
collapse between the different Reynolds number and wall-
actuation data is far worse and the y dependence in the equi-
librium layer far stronger for B,/ k than for B,/ k.
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FIG. 9. (Color online) Linear-log plots of -—% versus y, for
different Reynolds numbers and different wall- actuation cases (see
Table I). This is the same as B,/ k, versus y, because of Eq. (11)
and P=B,e.

These DNS results are for Reynolds numbers which are
not very large; yet the high-Reynolds number constancy of
B,/ k, in the equilibrium layer seems already not exceedingly
far from being reached whereas no such indication is shown
in the plot of B,/k versus y,. Figure 11 is a linear-linear
replot of Fig. 9 for easier comparison with Fig. 3.

From Eg. (13), direct plots of 2 S E d»<“> should give 1/,
in the equilibrium layer when Re,— % and B,/(Bsk,) in that
layer at finite Reynolds numbers. Thcse plots for each of the
Table I cases are given in Fig. 12. They do not compare
favorably with the plots of = dd—y<u), effectively plots of
B,/(B;k), in Fig. 3. However, this does not mean that in the
limit Re,— o, Eq. (4) is better than Eq. (13) in the equilib-
rium layer. The facts that C, and B, are approximately con-
stant in the range J,<y= ¢ and that B,/ k is much less col-
lapsed and less constant along y than B,/k, at Table I's

8 .
—+—Case A
7t —— Case A1H
—— Case A2
61 —=—Case A3}
—<—Case B
5t Case C |
™ e
=]
~ 4
>
a

FIG. 10. (Color online) Linear-log plots of Py/ uf_ versus y, for
different Reynolds numbers and different wall-actuation cases (see
Table I). This is the same as B,/ k versus y, because of Eq. (4) and
P=Bzf.
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FIG. 11. (Color online) Linear-linear plots of B,/ k, versus y,
for different Reynolds numbers and different wall-actuation cases
(see Table I).

Reynolds numbers (see Fig. 13 and compare it with Fig. 11)
suggest that the strong y and Re, dependencies of B; partly
cancel those of B,/k at those Reynolds numbers. As the
Reynolds number is increased to the point where B reaches
its asymptotic value 1 then this cancellation will either dis-
appear if B,/ k does not tend to a constant or will remain if it
does. In the specific context of the present stagnation point
approach, the choice between these two scenarios will de-
pend on the high-Reynolds number scalings of the kinetic
energy E.

According to classical similarity scalings, as Re,—®, E
~ui independently of y, &, and v in the equilibrium range
0,<y<< 4. If this is true, then Eq. (4) and the log law are
recovered from Egs. (11) and (13) with a von Kdrmén coef-
ficient  proportional to «,. However, Townsend’s [23] idea
of inactive motions would suggest that £ does not scale as ui
in the equilibrium layer when Re,—oe. If this is the case,
then Eq. (13) does not yield Eq. (4) and B,/ x does not tend
to a constant in the high-Reynolds number limit.

8 T :
| —+—Case A
7o —— Case A1
D‘] —46— Case A2
6d | —=—Case A3
> s
o ‘ —<—Case B
A i)
45 ;F ! Case C |
v i
o &
wo 1
o LA
;n—v 38 ‘ﬁ% i
>
)
2 oA -
7 24 D) Y
m
G L L

50 100 150 200 250 300 350 400

+

FIG. 12. (Color online) Plots of 2 > E iy (u) versus y, for differ-
ent Reynolds numbers and different wall actuations (see Table I).
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FIG. 13. (Color online) Linear-linear plots of B3ulﬁ(u> versus
y, for different Reynolds numbers and different wall actuations (see

Table I). These are effectively plots of B,/ k to be compared with
the similarly plotted B,/ k, in Fig. 11.

This discussion naturally brings us to the nonuniversality
of measured von Kdrmdn coefficients [3] which we now
comment on before moving to the analysis of some of the
highest Reynolds number DNS data currently available. If
E ~ui at high-Reynolds numbers and the log law therefore
holds as a consequence of Eq. (13), then, because of Eq.
(12), the von Kdrman coefficient will have to be proportional
to B and inversely proportional to C,, the number of stag-
natlon points within a volume 5 at the upper edge of the
buffer layer. There is no a priori reason to expect B and C,
to be the same in turbulent channel and pipe flows, for ex-
ample. There is therefore no a priori reason for the von
Kéarmén coefficient to be the same in different such flows
either.

In the case where the log law does not hold because of the
effect that inactive motions have on E, in Eq. (13), data fitted
by a log law may yield different von Kidrman coefficients
both as a result of KS:B%/CX but also as a result of fitting
mismatches.

In conclusion, whatever the scalings of E,, one can expect
measured values of the von Kdarméan coefficient to be nonuni-
versal as has indeed been recently reported [3].

VII. HIGH-REYNOLDS NUMBER DNS DATA

We now test some of our results and conclusions on a set
of data which includes the highest Reynolds number channel
flow computations currently available [10], i.e., Re=2000.
This set also includes data for Re,=950 [10] and our own
highest Reynolds number DNS data (Re —395) We plot
2Eu d}(u) B,/ (B3k,) (see Fig. 14) and - d}(u) =B,/ (B;3k)
(see Fig. 15) as well as 2B3Eu dy<u>—B2/K (see Fig. 16)
and B3 dy(u) B,/ k (see Fig. 17)

These high-Reynolds number results support and extend
the claims made in the previous section: B,/k, appears to
have the least departures from constancy in the intermediate
range, better that B,/(Bs;k) which is however better than
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—o—Case C
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5/ . DNS Data, Re =2000

T

3yu /2E * d<u>/dy
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(@)
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(b) y/8

FIG. 14. (Color online) 2 2Fa dy(u) ﬁ as function of (a) y,
and (b) y/ 5. DNS of turbulent channel ﬂows without wall actua-
tions. The Re,=950 and 2000 data are from [10].

B,/(Bsk,). The variations of B,/ k are offset by those of B
(see Fig. 18) which explains why B,/(Bs«) looks better than
B,/(Bsk,). The situation remains therefore identical to the
one we encountered with the lower Reynolds number simu-
lations in the previous section. The Reynolds number needs
to be very much larger than 2000 for B; to come close to its
asymptotic value 1 in an intermediate layer, as already
shown by experimental measurements spanning an ever
wider Reynolds number range in [3].

Alternative forms for the mean flow profile at high-
Reynolds numbers have been proposed in the literature and
we test in Fig. 19 the suggestion of a power-law form
[24,25]. The high-Reynolds number data we are using here
appear to give significant support to such a power-law form
with power exponent n= -——U =2/15, ie., df U,

~y, (1215 in the 1ntermed1ate layer On the basis of Eq.
(13), this result suggests that E, has a power-law dependence
on y, in that same layer. Indeed, combining Eq. (13) in its

B .
finite Reynolds number form, i.e., dy(u)~2—2E —, with
1~-B4, i.e., a constant

5 +r,y?
—U B —(1+2/15 yields +yi/15 2
Value of E+y2/ 3B,/ Bj in the equilibrium layer if B, is con-
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FIG. 15. (Color online) +-- vy (u)—TZK as function of (a) y, and
(b) y/ 6. DNS of turbulent channel flows without wall actuations.
The Re,=950 and 2000 data are from [10]; these plots have already
been presented in [10] for this data

stant in that layer. Figure 20 supports this conclusion albeit
with a constant value of E +y2/ 5B,/ B3 which appears to in-
crease slowly with Reynolds number. This Reynolds number
dependence may be intrinsic to E, resulting, perhaps, from
Townsend’s inactive eddy hypothesis.

VIII. CONCLUSION: A NEW ASYMPTOTIC APPROACH

Our DNS suggest that B;=\/{, and CX=nS5iy , are ap-
proximately constants in the region 6,<y=<J. Our DNS
demonstrate these well-defined approximate constancies for
Re, as low as a few hundred. These constancies imply that,
in the region 6,<y=J, the eddy turnover time 7 equals
%Ksy/uT with KSZB%/ C,. Assuming the constancies of By and
C, to be early manifestations of a high-Reynolds number
behavior, i.e., that B; and C; and therefore «, are indepen-
dent of y in §,<y=J as Re,—, it then follows that M

E+Ky in the equilibrium region 6, <y < & where produc—
tion may be expected to balance d15$1pat10n and —(uv) = u
The asymptotic equality (uv)~ is mathematically sup-

ported only for turbulent channel/plpe flows.
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FIG. 16. (Color online) B3 T dy(u}-— as function of (a) y,
and (b) y/ 5. DNS of turbulent channel flows without wall actua-
tions. The Re,=950 and 2000 data are from [10].

The classical intermediate asymptotics approach, which
assumes no dependence of the mean velocity gradient on v
and 6 where 6,<y<<4, does not consider the effect that
Townsend’s inactive motions [23] may or may not have on
—(u) However, if a new intermediate asymptotic approach
1s taken where the assumption of no dependence on v and &
is applied to 7=E/ € instead of dy(u) we are then led to 7
~ylu,, and the small effects of 1nact1ve motions on 5<”>
may not be neglected because T~- Kky/u, with —(uv) = u>
and —(uv)+ o (uy= € yield Eq. (13) Wthh explicitly contains
E, Ifasa result of inactive motions, E does not scale as u2
then this revised intermediate asymptotic approach will not
predict a log law for the mean profile even though a stagna-
tion point von Kdrméan coefficient «, exists and is well de-
fined within the approach. The mean flow prediction of this
approach is instead controlled by the intermediate asymptotic
dependence of E, on y, and Re,. If this dependence on y, is
a power law E_~y." in the intermediate range 8,<y <4,
then the mean flow profile will also be a power law, i.e.,
T;U +~y;1_”, in that intermediate layer.

DNS of turbulent channel flow with the highest values of
Re, currently available [10] suggest the same n=2/15 in
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—o—Case C
DNS Data, ReT=950

. DNS Data, Re =2000|

1000 1500 2000

0 500

(b) Y5

FIG. 17. (Color online) BgLi(u>—— as function of (a) y, and
(b) y/ 5. DNS of turbulent channel flows without wall actuations.
The Re,=950 and 2000 data are from [10].

both E, ~y." and iU ~y;'™ in support of our procedure
and formula (13). However, we should caution against ex-
trapolating this value of the exponent n to higher values of
Re,, in particular in the laboratory where the boundary con-
ditions are in fact different from the DNS which is periodic
in x and z. We stress that the main point of value here for us
is the support that these exceptional DNS [10] bring to our
approach and in particular to our formula (13).

Note also that the stagnation point von Kédrman coefficient

+ Ky
of whether the mean flow proﬁle isa log law or a power law.

Power law profiles of E, and - U in the intermediate layer
0,<y<9, 51mp1y force e= E — to imply that the classical

relation e~ —< does not hold in that layer.

This new 1ntermed1ate asymptotic approach is supported
by our DNS observations that Egs. (6) and (8) are valid in
the region §,<y=<¢ because Egs. (6) and (8) imply 7
=%Ksy/u7 with KSZB%/CS. The relation KSZB%/CS offers a
link between the underlying flow structure, described in
terms of stagnation points, and the dissipation/cascade statis-
tics of the turbulence. The universality in terms of both Re,
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FIG. 18. (Color online) By=—(uv)/ ui as function of (a) y, and
(b) y/ 6. DNS of turbulent channel flows without wall actuations.
The Re.=950 and 2000 data are from [10].
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FIG. 19. (Color online) Power law mean velocity profile: n
=-UL+%U+ plotted against y,. DNS of turbulent channel flows with-
out wall actuations. The Re =950 and 2000 data are from [10].
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. DNS Data, Re =2000||
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FIG. 20. (Color online) (a) E, and (b) E+yﬁ§—i with n=12—5 versus
v, for DNS of turbulent channel flows without wall actuations. The
Re,=950 and 2000 are from [10].

and flow-type dependencies of k, becomes a question con-
cerning the universality of the stagnation point structure of
the turbulent fluctuations. To what extent does it depend on
boundary and wall forcing conditions? Is it the same in tur-
bulent channel and turbulent pipe flows? Is it the same in
DNS of such flows where periodic boundary conditions are
used and in laboratory realizations of such flows where
boundary conditions are clearly not periodic? These are
questions which must be left for future investigation, but our
approach makes them fully legitimate as there is no reason to
expect the stagnation point structure of turbulent fluctuations
to be exactly the same in all these cases.

The implications of this new approach for the mean flow
profile in turbulent channel/pipe flows come by invoking a
local balance between production and dissipation as well as
—(uv)=u? in the intermediate range §,<y <& as Re,— . A
direct test against data of iU = %lfyi in that same range
and limit cannot be expected to be successful if Re, is not
large enough for —(uv) to equal u? over the range &,<y
< J. As clearly shown by various experimental and numeri-
cal data, this equality is well beyond the highest Reynolds
numbers currently available both numerically and in the
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laboratory. The significant finite Reynolds number deviations
from —(uv) = ui appear to compensate the deviations from a
log law and from the local production dissipation balance
with the result that plots of Yy U have a less varying ap-

pearance than plots of EE—ZU At face value this could be
1

K+
than for - - d U,= gﬁ However, plots of B,/ k, look signifi-
cantly better than plots of B,/k thus demonstratlng that
2 E o Ly, =B,/ (Bsk,) looks worse than yz- L1/, =B,/ (B3K)
only because B3——<uv>/ u; is so significantly nonconstant
(see Fig. 18).

As a final note, future investigations should attempt to
uncover the small-scale intermittency corrections to our scal-
ings by determining the weak dependencies that B; may have
on Re, and y, as a result of small-scale intermittency. These
dependencies will cause dependencies of x, on Re.and y,. It
is remarkable that small-scale intermittency may have an im-
pact, even if small, on the scalings of mean flow profiles.
These Reynolds number parts of their scalings should be
distinguished from those that Townsend’s attached eddies
may be contributing via the scaling of £, on Re,.

m1s1nterpreted as better support for the log law gU =
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APPENDIX: NUMERICAL METHOD FOR THE
COMPUTATION OF STAGNATION POINTS

In this study of turbulent channel flow, we focus on stag-
nation points of the fluctuating velocity field, i.e.,
u'(x,t)=u(x,t)—{u)=0, (A1)
where (.) here, denotes an average in space over the homo-
geneous directions x and z at a particular time. These zero-
velocity points are Galilean invariant and result from the
intersections of the three random surfaces u’(x,7)=0,
v/ (x,1)=0, w'(x,1)=0. Intersections of two random surfaces
gives lines and the intersections of these lines with a third
random surface gives points.

A root finding method is required to obtain where in space
our random function u'(x,¢) is locally zero. Here we use the
iterative Newton-Raphson method,

Xpew =Xoq+ &  with [Vu'] 0c=—up, (A2)
where Vu'(x,1)=Vu(x,r)—(Vu) and the subscript £ stands
for an interpolated quantity. The interpolation of the velocity
and its gradient was done using fourth-order Lagrangian in-
terpolation [26]. The particular choice of the interpolation
was chosen based on robustness, accuracy and computational
efficiency. The 3 X 3 linear system of equations was solved
for ox simply using the Cramer’s rule

Se=—

assuming that det( % I 'Z;y o |L ) #0.

The Newton-Raphson method gives a very rapid local
convergence to a root if the initial guess is sufficiently
good. So to have a chance at good starting points we
took them midway between two consecutive grid points
throughout our computational domain. It is well known
that different initial guesses can converge to the same
solution, due to the unpredictable global convergence prop-
erties of this iterative method. To avoid this issue we try to
bound the root finding no further than the neighboring com-
putational cells and we also ensure that no more than one
stagnation point exists in a cell, which is what should be
expected from a smooth velocity field of a well resolved
DNS.

, ou' Ju’ du , ' du’ Ju' ,
detlu,, — — Jdetl, —| ,u,, — J detl — | , —| .up
ﬁy C &Z L ox r (9Z C ox C ﬁy C
’ ’ ’ (A3)
u Ju
detl — —, —
x 1z dylg dz g

Our method was also compared to an algorithm proposed
in [27] for the detection of unstable periodic orbits in chaotic
dynamical systems, which has good global convergence due
to its attracting nature. This method is based on a universal
set of linear transformations, which transform unstable fixed
points to stable ones while maintaining their positions. How-
ever, this method can be expensive in more than two dimen-
sions and this is the reason why we choose here Newton-
Raphson, which is as accurate.

The number of zero-velocity points N, are computed
within thin slabs of dimensions L,X 6, XL, with 6,~ 5,
parallel to the channel’s wall. Time averages of N, were
taken by repeating the same procedure for several time in-
stances.
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